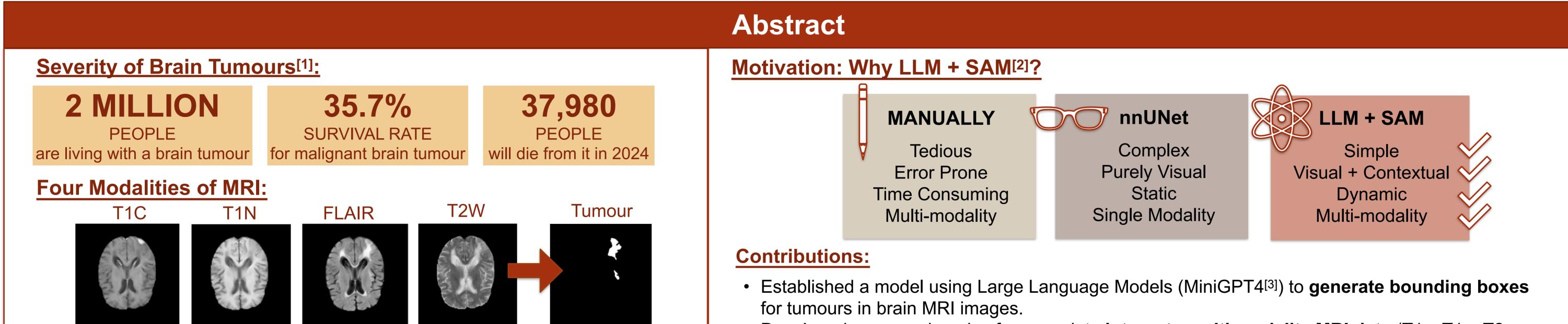


The University of Hong Kong - Department of Statistics and Actuarial Science



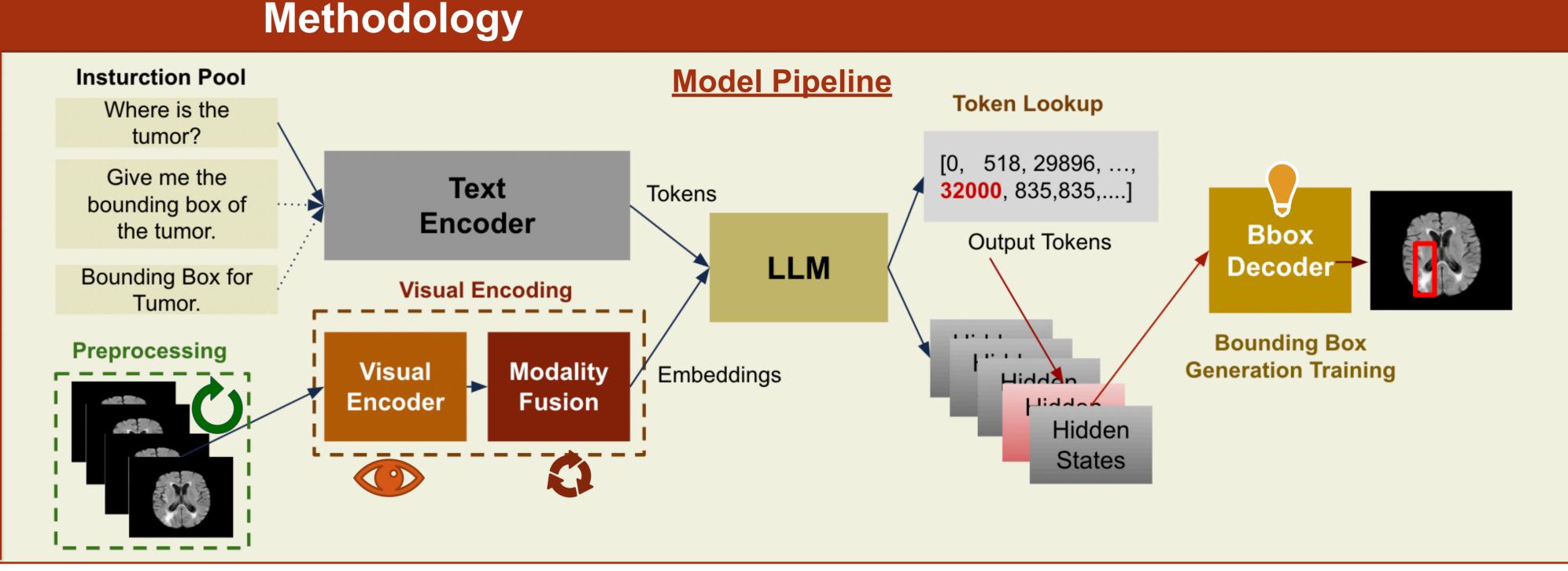
Objective: develop a robust, efficient, multimodal framework for accurate brain tumour segmentation by integrating various MRI modalities using LLM + SAM.

• Developed a comprehensive framework to integrate multi-modality MRI data (T1c, T1n, T2, FLAIR) for improved tumour segmentation.

• Established a truly simple, ready to use model for users with zero expertise on machine learning.

Challenges

- Need to implement a mechanism to train LLM to generate bounding box for images with given instructions.
- LLM is trained on natural images, which struggles with understanding medical images.
- Need to develop an innovative approach to let the LLM to generate a **synchronised bounding box** for four different input pictures.
- Need to increase the correctness (measured by Intersection Over Union) of the LLM predicted bounding boxes.



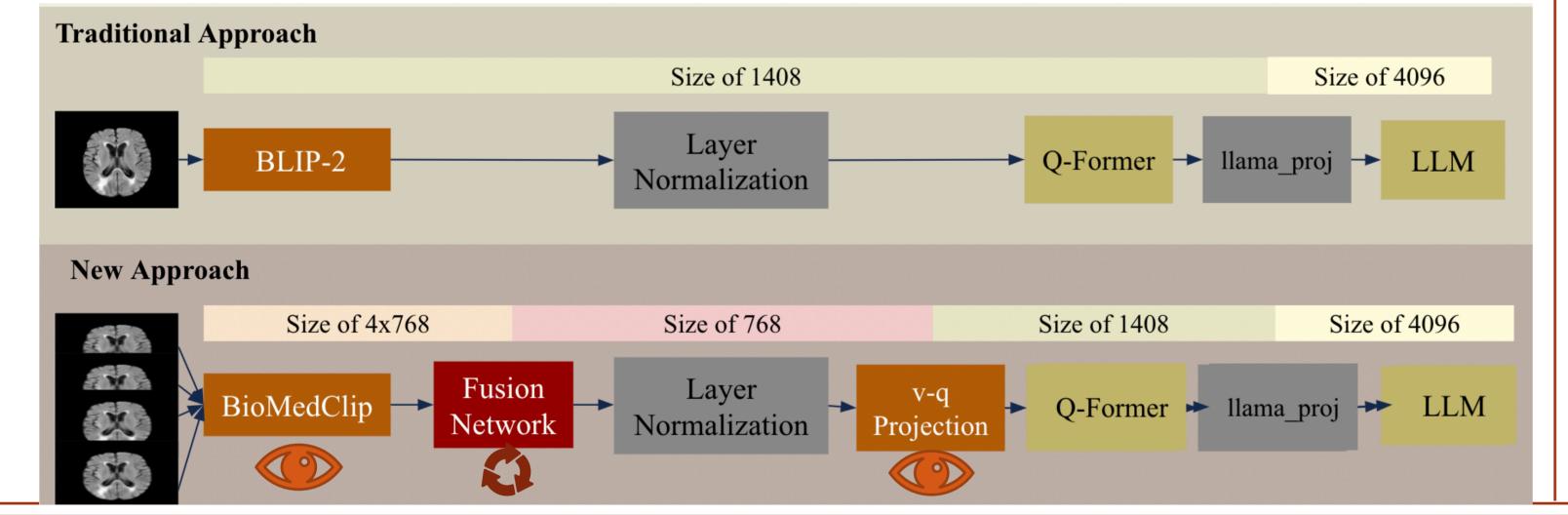
<u>**Preprocessing:**</u> Except for resizing and normalization transformation, add random rotation (p = 0.4) and flipping (p = 0.2) during prepossessing to enhance model understanding.

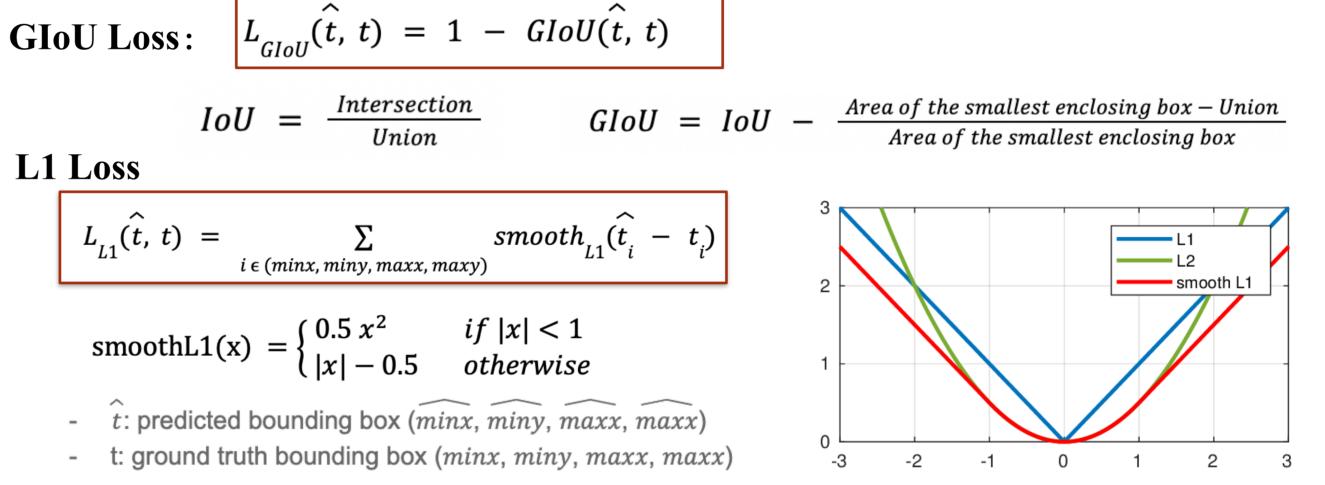
Visual Encoding

Specialised Visual Encoder: Utilized BioMedClip^[4] to enable LLM to understand medical images. **Modality Fusion**: Established a fusion network that enables LLM to accept multiple images as input.

Bounding Box Generation Training

Used the following loss functions to evaluate the model's performance, guiding it towards the desired direction of achieving higher accuracy in bounding box prediction.





Results

	E	<u> BLIP-2 Vs. BioMedC</u>	lip <u>Stand</u>	Standard vs. Additional Preprocessing		Single Modality Vs. Multi-Modality	
Tumour Type	loU	Relative Increase	IoU	Relative Increase	IoU	Relative Increase	loU
GLI	0.208	+ 145.2%	0.582	+ 3.4%	0.602	+ 8.4%	0.653
MEN	0.232	+ 157.8%	0.598	+ 1.2%	0.605	+ 10.7%	0.670
MET	0.219	+ 184.0%	0.622	+ 1.5%	0.631	+ 3.2%	0.651
	BLIP-2		Added BioMedCl	MedClip Added Additional Preprocessing Added Multi-moda			

X

Single modality model with standard preprocessing and BLIP-2 as visual encoder

X

Single modality model with standard preprocessing and BioMedClip as visual encoder

Single modality model with additional preprocessing and BioMedClip as visual encoder

× ×

X

柺

物

遖

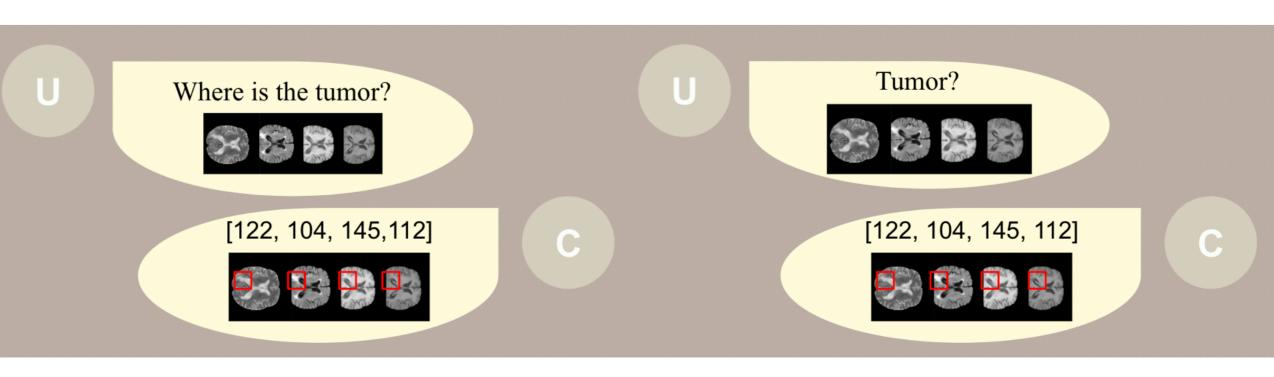
Multi-modality model with BioMedClip as visual encoder, and additional preprocessing

Conclusion & Evaluation Overall IoU Overall IoU + 212.3% 0.211 0.659

Established a LLM for bounding box prediction in Brain Tumour MRI images.

By adding the specialized visual encoder, additional preprocessing, and incorporating MRI data from all modalities, we achieved a 212.3% increase in overall IoU.

Example Use Case



- Efficient - No expertise on machine learning needed
- Accept various kind of prompt
- Easy to use

Future Work

- 1. Connect to **SAM** for more detailed mask generation.
- 2. Gather **patient data** on contextual information (gender, age) and apply it to the training process.
- 3. Explore potential adaptations to the fusion network.

Reference: [1] Brain Tumor Facts - National Brain Tumor Society. (2024, February 20). National Brain Tumor Society. https://braintumor.org/brain-tumors/about-brain-tumors/brain-tumor-facts/ [2] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, A., Gustafson, L., ... & Dollár, P. (2023). Segment Anything. arXiv preprint arXiv:2304.02643. Retrieved from https://arxiv.org/abs/2304.02643 [3] Zheng, K., He, X., & Wang, X. E. (2023). MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens. arXiv preprint arXiv:2310.02239.

[4] Zhang, S., et.all . BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv.org. https://arxiv.org/abs/2303.00915biomedical founda 2303.00915